What is AOSD
(Aspect-Oriented Software Development)?

Ana Moreira
amm@di.fct.unl.pt

Need for Separation of Concerns

Large ... complex ... distributed software systems

Development requires focusing
on one concern
at a time

Separation of Concerns

This is what I mean by focusing one's attention upon a certain
aspect; it does not mean completely ignoring the other ones,
but temporarily forgetting them to the extend that they are
irrelevant for the current topic.

Such a separation, even if not perfectly possible, is yet the only
available technique for effective ordering of one's thoughts that
I know of. I usually refer to it as

"a separation of concerns" [...]."

E. Dijkstra, A Discipline of Programming,
Prentice Hall, 1976, pp. 210

©2011 Ana Moreira Edsger Dijkstra 1930-2002 4

The Problem of Crosscutting Concerns

® Broadly-scoped concerns
—Distribution, security, real-time constraints, etc.
—Crosscutting in nature

—Severely constrain quality attributes and
separation of concerns

© 2011 Ana Moreira 4

What are Crosscutting Concerns?

o A concern whose specification (and
implementation) is scattered among several other
concerns

o A concern that crosscuts various requirements sets
or units in the specification

o A broadly scoped property that has an effect on
multiple requirements with potential consequences
to later development stages

Good modularity
XML parsing

¢ XML parsing in org.apache.tomcat | Good modularization

— red shows relevant lines of code S ®

— nicely fits in one box € o
[1998-2002 Palo Alto Research Center Incroporate 6

Good modularity
URL pattern matching

| el

® URL pattern matching in org.apache.tom| Good modularization

— red shows relevant lines of code . ()
— nicely fits in two boxes (using inheritance) e [)
[1998-2002 Palo Alto Research Center Incroporate 7

Crosscutting Concerns Affect
Modularlz?tlon

ogging is not modularized

[Ftomeat

(TN
| 1l

I

(0 11
I
LT

1[Il
I A

Bagd modularization

¢ logging in org.apache.tomcat (‘
— red shows lines of code that handle Ioggln
— not in just one place
— not even in a small number of places

[1998-2002 Palo Alto Research Center Incroporated]

Resulting Problems

¢ Scattering
— The specification of one property is
not encapsulated in a single
requirements unit, e.g., a viewpoint,
a use case.

o Tangling

e Each requirements unit contains

descriptions of several properties or
different functionalities

Il

M| il

© 2011 Ana Moreira

o

Consequences

® Redundancy

® Difficult to understand each concern and
each module

® Difficult to evolve each module
® Reduced reuse

® Increased developing time and cost

©2011 Ana Moreira 1

Crosscutting concerns

Persistence

Logging

Goal: to encapsulate
Tpleme ntation each concernin a

separate module (known
[R. Laddad (JavaWorld)] as aspect)

©2011 Ana Moreira 12

Aspect-Oriented Software
Development (AOSD)

AOSD tools, techniques

and
methodology

| Distribution | Data
Management

| Security |

© 2011 Ana Moreira 13

A Definition of AOSD

® AOSD: systematic identification,
modularisation, representation and
composition of crosscutting concerns [1]

[1] Rashid, A., Moreira, A., Araujo, J. “Modularisation and Composition of
Aspectual Requirements”, Proceedings of 2" International Conference on
Aspect-Oriented Software Development, ACM, 2003.

©2011 Ana Moreira 14

Potential Benefits of AOSD

Improved ability to reason about problem domain
and corresponding solution

Reduction in application code size, development
costs and maintenance time

Improved code reuse

Requirements, architecture and design-level reuse
Improved ability to engineer product lines
Context-sensitive application adaptation

Improved modelling methods

©2011 Ana Moreira 15

Crosscutting: The Tracing Concern

class A {
/I some attributes
void m1() {

/I method code

}

String m2() {

/I method code

/I return a string

class B {
/I some attributes
void m2() {

/I method code

}

intm3(){

/I method code

/l return an integer

} }
©2011 Ana Moreira 16
’ [] [] L]
Wouldn't it be Nice if ...
class A{ class B {
// some attributes /l some attributes
void m1() { L, void m2() {
Il meth‘om /I method code
} }
String m2() { 7 intm3(){
I methom /I method code
/I return a string /l return an integer
} }

aspect Tracing {

when someone calls these methods

before the call {System.out.printin(“Entering ” + methodSignature);}

after the call {System.out.printin(“Leaving ” + methodSignature);}

}

© 2011 Ana Moreira

Tangling and Scattering

Data Classes

Primary Functionality Security

Account Loan Customer
— e | |
[|
User Interface
ATM Web PC Terminal

— S—

© 2011 Ana Moreira

Wouldn’t it be Nice

aspect
Persistence

Data Classes

if ...

[aspect]

| Security

Account Customer B
User Interface
\ ||
ATM Q;,eb PC Terminal

© 2011 Ana-Moreirar

The Notion of a Join Point

class A {

void m

// some attributes

KAW)

Type of
Join Point

}

11 TTIC ‘oae
I retus ‘ring

class B {
// some attributes
void m2() {
Specific Join
ntm Points in this
Program that

aspect Tracing {

we are
Interested in

when someone calls these methods

before the call {System.out.printin(“Entering ” + methodSignature);}

after the call {System.out.printin(“Leaving ” + methodSignature);}

Moreira

20

AOSD: main steps

1. Decomposition: Identify crosscutting

concerns

2. Specification/Implementation: Specify/
implement each concern in a separate

module

3. Compostion (weaving): Define composition
rules by defining composition units

21

10

AOP

Aspectd (1997) http://aspectj.org/

®* Composition filters (1991) [Bergmans and Aksit]

DemeterJ/DJ (1993) [Lieberherr, Orleans, and Ovlinger]

Hyper/J (1999) [Ossher and Tarr]

CaesarJ http://caesarj.org/

Apostle, Aspect Programming em Smalltalk
® AspectC, uma extensao para C
¢ AspectC++, uma extensao para C++

¢ JAC, Java Aspect Component [Pawlak, L. Seinturier, L.
Duchien, and G. Florin]

©2011 Ana Moreira 22

AspectJ

¢ Extension to Java
® Developed at Xerox Park por Gregor Kyczales

® Integrated in Eclipse
since 2002
www.eclipse.org/aspect;

[Gregor Kizales]

© 2011 Ana Moreira

11

AspectJ: code generation

T
E-:::v' !
=

1

Class Narme
e Typa =
Vot

0 et type- e

© 2011 Ana Moreira 24

AspectJ

® Join points
® Pointcuts
® Advices

® Aspects

® Aspect weaving

12

AspectJ

Joint points

¢ Join points: well-defined points in the
execution of a program

—Method call, Method execution
—Constructor call, Constructor execution
—Static initializer execution

—Object pre-initialization, Object initialization
—Field reference, Field set

—Handler execution

—Advice execution

26

AspectJ

Pointcuts

® A set of join point, plus, optionally, some of the
values in the execution context of those join
points.

® Can be composed using boolean operators || ,
&&

®* Matched at runtime

13

Language
Advice

®* Method-like mechanism used to declare that

certain code should execute at each of the join
points in the pointcut.

Advices:
— before

— around
— after

Aspect weaving

® Aspect weaving: makes sure that

applicable advice runs at the appropriate
join points.

® In Aspectd, almost all the weaving is done

at compile-time to expose errors and
avoid runtime overhead.

14

A guide tour of AspectJ

® C has “hello word”

® Lisp/Scheme have the “factorial” function
¢ Smalltalk has the “Counter” class

¢ Java has the “Observer” pattern

¢ Aspectd has the “figure editor” system

30

Figure editor example

® A figure consists of several figure
elements. A figure element is either a
point or a line. Figures are drawn on
Display. A point includes X and Y
coordinates. A line is defined as two
points.

31

15

Crosscutting concern (1)
N
—- FigureElement

—-]

Point Line
gex(12 getP1 Components are
getY() setP1 _ :
setX(int) setP1(Point) Cohesive
setY(int) setP2(Point) - Loosely Coupled

- Have well-defined interfaces
(abstraction, encapsulation)

Well done!

Now | would like an extension. Notify
ScreenManager if a FigureElement moves

©2011 Ana Moreira 32

Crosscutting concern (2)

Now enhance the design to trace
Display the execution of all the operations

i

. * .

Figure »| FigureElement
[

Point Crosscutting
getx() 2 getPl > Concern
getY() setP1
setX(int) setP1(Point)

.) DisplayTracking
setY(int) setP2(Point)

©2011 Ana Moreira 33

16

Example: “tracing” and “tracking”(1)

© 2011 Ana Moreira

Display
Figure » FigureElement
JaN
I]

Point Line
getx() 2 getP1
getY() setP1
setX(int) setP1(Point)
setY(int) setP2(Point)

Tracer

traceEntry ()
traceExit ()

Tracing

34

CEvAamnla: “braninA” AnAd “h’.quing” (2)

DisplayTracker

Tracer

© 2011 Ana Moreil

class Point {

DisplayTracker.updatePoint (this) ;

Tracer.traceEntry (“Entry Point.set”);

Tracer.traceExit (“Exit Point.set”);

Display void setX(int x) {
Figure
_X = X;
[
Point

getX() getPl

getY() setPl

setX(int) setP1(Point)
E setY(int) setP2(Point)

35

17

class Line {

private Point pl, p2; Wlthout AOP

Point getPl() { return _pl; }
Point getP2() { return _p2; }

void setPl(Point pl) {
Tracer.traceEntry (“entry setPl”);

_pl =pl;
Tracer.traceExit(“exit setPl”);
} class Tracer {
void setP2(Point p2) {
Tracer.traceEntry (“entry setP2”); static void traceEntry(String str)
_P2 = p2;
Tracer.traceExit (“exit setP2”); { A
} System.out.println(str) ;
. }
class Point ; . . -
) . { static void traceExit(String str)
private int _x =0, _y = 0; {
int getX() { return x; } System.out.println(str) ;

int get¥Y() { return Y }

void setX(int x) {
Tracer.traceEntry (“entry setX”);

X = X;
Tracer.traceExit (“exit setX”)
}
void setY(int y) {

Tracer.traceEntry (“exit sety”);

dangledicode!

I Scatteredcode!
cer.éraceExit(“exit sety”) ;

© 2011} AERSSE 36

class Line {

private Point _pl, _p2; With AOP

Point getPl() { return _pl; aspect Tra01ng {
Point getP2() { return _p2;

void setPl(Point pl) { pointcut traced():
1 =pl; call(* Line.¥*) ||
) P ‘ call (* Point.*);
void setP2(Point p2) { before(): traced() {
) P2 =p2; println (“Enter ” +
} thisJoinPointStaticPart.getSignature()) ;
}
ClaSS POlnt { after () : traced() {

private int _x =0, _y = 0; println (“Exit ” +

thisJoinPointStaticPart.getSignature()) ;
int getX() { return _x; }

int getY() { return _y; } }
}
void setX(int x) { ’ . ’
_x = x; Aspectiisidefinediintalseparatelmox ule
} o :
void setY(int y) { Crosscuttinglisiiocalized
Y=Y No'scatteningiNoitangling

}
©4011 Ana Moreira |mprOVed modularity

Aspects modularized

|:| Tracing Aspect
[l Display Tracking Aspect

©2011 Ana Moreira 38

Main Value of Aspect-Orientation

® Abstraction: abstract away from the details of how that
crosscutting concern, or aspect, might be scattered and
tangled with the functionality of other modules in the
system

® Modularization: keep crosscutting concerns separated
regardless of how they affect or influence various other
modules in the system, so then we can reason about each
module in isolation — Modular Reasoning

¢ Composition: the various modules need to relate to each
other in a systematic and coherent fashion so that one may
reason about the global or emergent properties of the
system — Compositional Reasoning

©2011 Ana Moreira 39

19

©2011 An;

Pointers to Further Reading

AOSD Wiki at: http.//www.aosd.net

Introduction to AOSD White Paper and AOSD Ontology available at:
http.//www.aosd-europe.net

Communications of the ACM, Special Section on AOP, 44(10), October
2001

IEEE Software, Special Section on AOP, 23(1), Jan/Feb 2006

Aspect-Oriented Software Development, Filman, Elrad, Clarke, Aksit
(eds), Addison-Wesley 2004

Discovering Early Aspects, Baniassad, Clements, Araujo, Moreira,
Rashid, Tekinerdogan, IEEE Software 23(1), Jan/Feb 2006

Special Issue on Early Aspects, IEE proceedings - Software
Engineering - Volume 151, Issue 04, August 2004, (Rashid, Moreira,
Tekinerdogan (eds))

a Moreira 40

20

